1.单体温室大型化,温室结构轻简化
建造大型化温室有利于提高土地利用率、方便机械化作业和产业化生产、提升环境控制稳定性以及节省投入资金。
因此,国外的温室普遍趋向温室大型化、工厂化,温室结构的轻简化,温室材料的研究热点也集中于以下5个方面:降低设施结构的遮光面积;提升结构材料的隔热性能;提高温室和连接部件的密闭性;延长设施温室墙的使用寿命;便于温室的安装和拆修。
美国加利福尼亚州新建造温室的单体面积都在1公顷以上,采用无土栽培技术生产的番茄产量可达75千克/平方米。
荷兰设施类型大多选用文洛型连栋温室,布局采用平行三段式结构,单体温室面积在4~5公顷。
温室的北面为办公管理区,中间区域为操作车间区,南面为作物栽培区,在每个温室通道安装自动玻璃感应门进行隔断,并对进出人员执行严格的消毒管理,以预防和控制病虫害的发生。
此外,因铁天沟散热约占温室散热的16%,荷兰、以色列等普遍采用中空铝合金骨架代替传统温室的单层铁材质天沟,不仅减少了设施温室的支撑结构,也降低了支撑结构的遮光面积,还有效增加了设施温室的采光,提升了保温效果。
2.温室生产引入工业技术,设施农业自动机械化
美国、荷兰、以色列等发达国家将工业领域的先进技术嫁接到设施农业生产管理中,使设施农业被赋予了“工厂化+农业”的内涵,温室生产进入高投入、高产出、高效率管理模式,并实现了将温室各环境因子调控成作物生长发育最适宜的条件,基本摆脱或免受外界环境因素对作物生长的干扰,达到作物周年生产和均衡上市的目的。
目前,以美国、日本、荷兰、以色列为代表的发达国家已具备了设施农业设备完善、技术规范、产量稳定、质量安全可靠等特点,也形成了温室研究制造、生产要素聚集、生产资料配套、储藏运输等为一体的设施农业产业体系。
如荷兰研制出温室清洗装置,用于清洗温室屋面的落灰来提高温室的透光率。用智能机器人取代人工生产管理来改善设施环境,以提升劳动生产率和保证设施作业的均一性和一致性。
3.设施农业转向低碳节能、绿色环保
国外在发展设施农业过程中,以保护环境、低碳节能作为前提条件,在探索温室能源高效利用、保护生态环境等方面进行了大量的研究工作。
节能新材料、新技术和新能源的利用是温室领域研究的热点和难点,其中相变储热技术和太阳能的有效利用是最具发展前景的节能技术。
一些国家通过对温室的覆盖材料进行镀膜处理来改变材料特性,使其具有阻止长波向外辐射而减少热损耗的特性来实现节能效果。
荷兰瓦赫宁根大学研制出一种可应用于温室加热降温的太阳能集热器,该集热器可将储存的多余太阳能转换成电能,从而进行冬季供暖与夏季降温,节省能源消耗。
欧盟明确要求温室作物生产全部采用无土栽培,替代费水、费肥、费工的传统种植方式,可避免土壤连作障碍,生产出健康安全的农产品。
还有一些国家采用营养液闭路循环系统代替传统的营养液无土栽培技术,通过对营养液的回收、过滤、消毒等技术手段,实现节水30%~40%、节肥35%~40%,大大提高了营养液的利用效率,也减少了营养液过剩外排造成的面源污染。此外,探索温室新型补光光源LED也是节能设备研制的热点之一。
4.物联网与农业深度融合,助推“智慧农业”
随着互联网、大数据、云平台等技术的普及,温室环境控制逐步实现智能化、网络化管理。
荷兰已将环境智能控制系统应用于现代设施花卉生产中,可以依据花卉生长阶段对于不同环境因子的需求,利用物联网技术对包括温度、光照、空气、湿度、化肥等环境因子的多维调控,并结合遥感技术、管理专家系统、地理信息系统等高新技术对鲜花从移栽、生长、采收、包装储运、自检自控等流程中的信息、图像进行信息化管理,实现了鲜花生产的高度自动化。
美国、日本、以色列等通过研究温室作物生长发育与环境、营养之间的定量关系,构建作物生长发育模型和环境控制信息化模型应用到温室生产管理中,进一步降低了温室系统能耗和运行成本。
日本大力发展植物工厂系统,利用传感器对温室内的环境因子进行自动化采集和校验,将数据传输至计算机、手机等终端,实现了生产过程的自动化、智能化和可视化。
截至2016年底,日本拥有254家植物工厂,其中超过200家都为密闭空间的“人工光型”及“人工光与太阳光并用型”植物工厂,建立起农作物周年连续产出。

小程序扫码观看
更多农机资讯尽在农机一键查
版权声明:本文仅代表作者观点,不代表农机新闻网立场。 本文为分享行业信息所用,如需转载,请联系原作者。